

Spheres of Earth

Atmosphere- Layer of gases \#Hydrosphere- All liquid water Lithosphere- Solid surface EBiosphere-Living Portion Cryosphere-Ice Portion

Evidence that the Earth is Round

©"The Sinking Ship"
Lunar Eclipses
\#Sun and Star Path Across Sky
Altitude of Polaris
©Photos from space (best evidence)

Model of Earth

*Apparent Shape of the Earth

 -The best model of the Earth is a perfect sphere (pool ball, ping-pong ball)-round and smooth - Scale Model - Drawn to Scale
Oblate Spheroid

©The ACTUAL shape of the Earth - True Shape of the Earth Slightly flattened at the Poles Slightly bulging at the Equator Caused by Rotation of Earth

Gravity Measurements

$\%$ If Perfect Sphere-Same Weight Weigh more at Poles
*Closer to the Center of Planet
Weigh less at Equator
Farther away from Center

Latitude

A measure of how far north or south of the equator you are
Equal to the altitude of Polaris (in the Northern hemisphere)

"FLAT-ITUDE"

Equator $=0^{\circ}$
N. N .Pole $=90^{\circ} \mathrm{N}$
© S.Pole $=90^{\circ} \mathrm{S}$

Determining Latitude

\&ALTITUDE of POLARIS = LATITUDE

 Only true in the northern hemisphere Polaris

This angle is equal to your latitude

Longitude

©A measure of how far east or west of the Prime Meridian you are
e"LONG-itude"
© Prime Meridian $=0^{\circ}$ \%International Dateline $=180^{\circ}$
Locations on the same longitude share the same "solar time"

Longitude

Each time zone is 15 degrees apart
Earth rotates 15 degrees per hour
U.S. has 4 major time zones

Travel vertically through zone, time does not change
Travel horizontally from one time zone to the next, time changes

Determining ongitude

You MUST know the following: The time where you are \#The time at the Prime Meridian Find the difference between the time where you are and the time at the Prime Meridian Multiply it by $15^{\circ} / \mathrm{hr}$ (this gives you your longitude)
Olf your time is less, you are west Flf your time did increase, you are east

Fields

\% Region of Space
 A map displaying pressure, temperature or elevation data

Drawing Isolines

Lines can never intersect Either complete circles OR run off the edge of the map

Separate higher values from lower values

Interval (Contour Interval)

©The difference in value between two adjacent isolines
©Difference is an equal interval....by 4's, 10's, 100's

Isolines

\%lso = Same Lines that connect points of equal elevation, pressure or temperature

Mapping Earth

Contour Lines

ELines that connect points of equal elevation \#Index Contour Lines show distinct elevations Darker in Color

Mapping Earth

Isotherms

Lines that connect points of equal air temperature

Mapping Earth

Isobars

Lines that connect points of equal air pressure

Contour Map (topographic map)

Map that shows the 3-d landscape of an area (mountains, valleys, etc)

Gradient

※Page I in ESRT
 © $\mathrm{G}=$ Change in Field Value Distance

Steepest Slope??

Where the contour
lines are closest together

- Also known as the steepest gradient

Mapping Earth

Stream flow direction?

©Streams flow OPPOSITE where the v's are pointing
Streams ALWAYS flow downhill (high elevation to low elevation)
"Streams flow "out of theV"

Highest Elevation?

First, find the highest contour line on the map...
*Highest possible elevation is one value less than next contour line

Elevation?

First, find the lowest contour line on the map...
LLowest possible elevation is one value greater than next contour line

Depressions

Crater or hole in the ground Look for Hachure Lines

A side view, or cross-section, of a landscape
UUse scrap paper to record the elevations of the contour lines crossing the profile line
Transfer those markings to a graph to draw the profile ※PRACTICE THIS !!!!

